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SECTION 1- GENERAL THEORY

Because of the intercontinental ballistic missile and satellite programs,

4i the hypersonic flow around a body of revolution has been investigated. Recently

the wake of such a body in a hypersonic tlow becomes one of the most interesting

problems among aerodynamicists due to the desire to monitor the re-entry

bodies. The thermal radiation emitted by the hot gas left in the trail and the

electron density in the trail are the observables in the trails of such bodies.

In order to determine the observables, we have to know, in detail, the flow

field of the wakes behind the body, which ,epends mainly on the flow in the

boundary layer of the body. The flow field in the boundary layer of the body as

well as that in the wake may be either laminar or turbulent. The properties of

the observables depend greatly on whether the flow in the wake is laminar or

turbulent. Hence it is extremely interesting to know the transition point or the

transition region of the flow field on and behind a body of revolution. Even

though there is no theoretical analysis available to predict accurately the transi-

tion point, the stability of a laminar flow has a close relation with the transition.

In this report, we will study the stability of axisymmetrical flow in general,

which includes both the stability of axisymmetrical wake or jet and of boundary

layer flow on a slender body of revolution.

A detailed analysis of the stability of a hypersonic flow over a body is

very complicated because not only is the flow compressible, but the composition

of the air may vary considerably from place to place. An accurate analysis

should include both the effect of compressibility and the effect of th- . omposi-

tion of the gas in the flow field. However, since the stability of the axisym--
/1

metrical flow of an incompressible fluid has not yet been well developed , it

would be useful to investigate this case first to bring out the essential points of

stability of an axisymmetrical flow before an extensive program of the stability

of an axisymmetrical flow of a compressible gas with the influence of variable

composition is carried out.



The problem is formulated in a general manner, so that the results may

be applied to both flow problems with solid boundaries, such as boundary layer

flows and pipe flows, and those without solid boundaries, such as wake flows

and jet flows.

Since we consider only the axisymmetrical basic flow, the general dis-

turbances will be rotationally symmetric disturbances. We shall formulate the

problem of the stability of an axisymmetric flow subjected to a rotationally

symmetric disturbance in Section 2. But we shall show in Section 3 that the

axisymmetrical flow is always stable with respect to disturbance of the tangential

velocity component. As a result we need only to study the stability with respect

to axisymmetrical disturbances in detail in Sections 4 to 6.

The stability equation of axisymmetrical disturbances is investigated and

its solution for large Reynolds number is found for arbitrary basic velocity

profile in Section 4. The boundary value problems of the stability for various

axisymmetrical flows are analysed in Section 5. However, the detailed numerical

calculations will not be given here but in later parts of this report. The com-

parison of the stability of axisymmetrical flow with that of two-dimensional flow

will be discussed according to an equivalent principle in Section 6.

2



SECTION 2 - GENERAL FORMULATION OF THE PROBLEM

We use cylindrical coordinates r, G, z with velocity components u, v, w

in the direction of r, 8, z,respectively. For an incompressible and viscous

fluid, the equation of continuity and equations of motion in the cylindrical co-

ordinates are, respectively,

1 6ru 1 av 5w (2.1)

r __r r -e -

u + uu v +u a u v(2  .1

r r r r .5

OAt r r 6 oz r o r
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For an axisymmetrical flow subjected to rotationally symmetric disturb-

ances, all the variables are independent of the angular displacement. Hence,

cquations (2. 1) to (2. 4) reduce to

1 bru bw_1 r + w- 0 (2.5)
r 5r 6r3
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where 2 2 + I + -

1 r ar

p is the density, p is the pressure and v is the coefficient of kinematic viscosity

of the fluid. Equations (2.5) to (2.8) are the basic equations for our stability

analysis.

We consider only the stability of parallel or nearly parallel flows which

include flows of the types of boundary layer, wake, and jet. The basic velocity

profile of these parallel and nearly parallel flows may be considered as follows:

U = V = 0 , W = W (r) (2.9)

From now on, all quantities are to be non-dimensional such that all velocities

are expressed in terms of a characteristic velocity U (z), all lengths are ex-
0

pressed in terms of a characteristic length L (z), the pressure is expressed in
2

terms of o V , the time is expressed in terms of L/U and the Reynolds number
0 0

of our problem is

LU
RO (2.10)
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For nearly parallel flow, U and L are usually functions of the axial distance z.
0

We shall discuss the choice of prop-er values for U and L when we investigate0

specific flow problems in the later parts of this report.

For a rotationally symmetrical disturbance, all the variables are inde-

pendent of the angular displacement 8. Hence, the velocity components and the

pressure may be written in the following form:

u (r, z, t) = u (r) exp [ioQ (z - Ct)]

v (r, z, t) = v (r) exp [io (z - Ct)]

(2.11)

w (r, z,t) = W(r) + w (r) exp Lica (z-ct) (

p (r, z,t) = P(z) + p (r) exp [icY (z-ct)]

Where W (r) and P (z) are respectively the velocity and pressure of the basic

flow;u= u (r), v = v (r), w = w (r) and p = p (r) are respectively the perturbed

velocity components and pressure, which are functions of r only; o is the wave

number which is real and positive and c is the complex wave velocity, i.e.,

c = c + ic. (2.12)r 1

with i =

Substituting equation (2. 11) into equations (2. 5) to (2.8) and neglecting the

higher order terms of the perturbed quantities, we obtain the following equations

for the perturbed quantities

(ru)' + i a r w = 0 (2.13)
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i a (W-c)u = -p' + 1 + w - 2 - -) (2.14)

R r2
r

ia (W-c) w + uW' = -a p + i (w" + - -2 w)(2.15)

ia (W-c) r 1VI I + 2 r--r (2.16)
R r 2C - )(.6r

where prime refers to the differentiation with respect to r.

It is interesting to notice that equations (2. 13) to (2. 16) may be divided

into two independent groups:

(i) Equation (2. 16) is independent of the other three equations. Since

equation (2. 16) consists of the unknown v (r) only, this equation

may be used to study the stability of an axisymmetrical flow to

the tangential velocity disturbances.

(ii) Equations (2. 13) to (2. 15) are coupled. These three equations

may be used to study the stability of an axisymmetrical flow dup

to some axisymmetrical disturbances u, w and p.

We may reduce equations (2. 13) to (2. 15) into a single differential equation

for the function

f = ru (2.17)

It is easy to show that the function f is proportional to the perturbed stream

function of the axisymmetrical flow.

Eliminating the pressure p (r) from equations (2.14) and (2.15) we have

2
o (W-c) u+i& (W-c) w' + i W'w+ u' W' FUW"

1 w w' 2 jco w 2 u(w ' " f + W . . o w ') - - (u " f + - _ C U - U( . 8R -2R r 2
r r
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We may express u, w and their derivatives with respect to r in terms of f and

its derivatives in r by the help of equations (2. 13) and (2. 17). As a result,

equation (2. 18) gives

2 fV W'_ i

(W -c)(f" -a 2f f)_ f (W" -t) = -

r r aR

(fiv -2a 2f" +a 4 f) -2 (f' -a 2f') + - 1 -) (2.19)
r rr (

Equation (2. 19) is the fundamental equation for the stability of an axisymmetrical

flow subjected to axisymmetrical disturbances. It is interesting to notice that

if those terms containing explicitly the factor r vanish, equation (2. 19) reduces

to the well known Orr-Sommerfeld equation for the stability of two-dimensional

parallel flows. 2

For the flow field between r = rI and r = r 2, equation (2. 19) is then to be

solved under the boundary conditions

f (r )=0 , f' (r )= 0 , f (r = 0 , fl (r 2)= 0 (2.20)

Since equation (2. 19) is a fourth order ordinary differential equation, there

exists a fundamental system of four solutions of equation (2. 19) which are analytic

functions of the variable r and of the parameter c, a and aR. Let the four

solutions be fl, f2 f and f 4 The conditions (2. 20) gives the determinantal

equation

fl1 (rl) f 2 (rl1 f 3 (rl1 f 4 (r 1)

F (, a LY) -fl (r2) f2 (r2 ) f 3 (2 ) f4 (r2 ) =
F (c, cc, a R) 3 2 0

fl (r ) f' (rl) f3I (rl) f4 (rl)

f' (r f' (r2 ) f (r2 ) f (r2
1 2) 2 3 2) 4 2 (2.21)
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Since the function F(c, a, a R) is an entire function of the variables c, ak. and

QR, we may solve for c and obtain

c = c (a, R) (2.22)

Since a and R are taken to be real and positive, we have four equations (2. 21)

and (2.22) C c ( , R);c =c (a, R) (2.23)r r ' 1 1

The curve ci = 0 gives the limit of stability.

The general solutions of equation (2. 19) for arbitrary basic velocity pro-

file W(r) are difficult to obtain. In Section 4, we shall find the asymptotic solu-

tions for the limiting cases of very large a R.
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SECTION 3 - STABILITY OF AN AXISYMMETRICAL FLOW WITH RESPECT TO
THE DISTURBANCES OF THE TANGENTIAL VELOCITY COMPONENT V

The function v of the perturbed tangential velocity component of equation

(2.16) should be considered as a complex function of r. If we multiply equation

(2. 16) by rV where bar denotes the complex conjugate, and integrate over the

interval (r 1 , r2 ) with respect to r, we obtain
I2

rr

ix 2(W -c) v vrdr~ - (VII + v v r d vrI  r v
1 1 (3.1)

but r rr2r J 2
v"vrdr = vr f (v'v+v'v'r) dr=

r1  r1 r1

r 2

W vv+v'v'r) dr 2)

2
r

where the boundary conditions v' (r= v' ( 0 are used.1rl (r 2 ) 0arusd

Substituting equations (2. 12) and (3. 2) into equation (3. 1) we have

V r 2  r
i r (W - c) vVrdr + C f vVrdrri rl

r 1

From the imaginary part of equation (3.3) we have
r
2 W v r dr

r
C r 1 (3.4)
r r2 vVr dr

r 1



Equation (3.4) gives the velocity of propagation of this tangential velocity

disturbance.

From the real part of equation (3.3), we have

2 -2 _ 2 -- v v ) d r

(v'vr+U vvr+ r

c OR r (3.5)1 O 1

J v~rdr
r 
1

Since the integrals in equation (3.5) are all positive quantities, c. is then always

negative. As a result, the tangential velocity disturbances will always be damped

out for all axisymmetrical flows subjected to rotationally symmetric disturbances.

K't was Lew 3 who first showed that this result holds true for axisymmetrical jet

flow. Since the flow is stable with respect to v, we need only to consider the

axisymmetric disturbances governed by equation (2.19)
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SECTION 4 - APPROXIMATE SOLUTIONS OF THE STABILITY EQUATION OF

THE AXISYMMETRIC FLOW (2.19)

We introduce a new variable such that

2
rr (4.1)

2
r

C

where r=r whenW=c.
c

Equation (2.19) in terms of becomes

i
(W -c) Lf- (1-W )wf =- LLf (4.2)oR

11

where prime refers to derivative with respect to and

f (r) =f ')

d2  1
L =1 i- 4)d 2 -~ 12

r rc c
a E-2 , R - R (4.3)

It is interesting to notice the similarity of equation (4. 2) with the Orr-

Sommerfeld equation of two-dimensional parallel flow. If the factor (1 - ) of

equation (4. 2) is replaced by unity, equation (4. 2) reduces exactly to the Orr-

Sommerfeld equation of the stability of two-dimensional flow. Because of the

similarity, we may obtain the solutions of equation (4.2) by the same method used

in the analysis of Orr-Sommerfeld equations. The mathematical properties of
2the solutions of equation (4. 2) are similar to those of Orr-Sommierfeld equations.
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There exists a fundamental system of four solutions of equation (4.2) which are

analytic functions of the variable and of the parameter c, ot and a 1 R1 , being,

in fact. entire functions of these parameters.

We may find the solutions of equation (4. 2) by convergent series in terms

of a small parameter e. First we make a change of variable

= E , f( ) = ¢ (0 ) (4.4)

Equation (4.2) becomes

(W C ( eTI d2 1- 2 e2 0I -(1 Ej 20 Wit[ d2 221 2
d 4 2

2 - ) -2a 2e 2 d 2 +
a1RIE2 i d (1- e) -d

a4 4 - 2 (1 - en) e d ¢  ] (4.5)1dn 3

where

Wit

o 22

wiv  (4.6)
W WI + W 2!' ( n) + + 2

o o 2!

subscript o refers to value at = 0. The solution is then obtained in the form

f( ) = ¢(r) 0 ¢(0) (T)I+ € () + .(n)+.
(4.7)
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and the differential equations for the approximations of successive orders can

be obtained by substituting equations (4.6) and (4.7) into (4.5) and equating all

the coefficients of the various powers of C to zero. From equation (4.5) we find

that the proper choice of the parameter C is

3 1

R = (& R1) (4.8)

The differential equations for the functions (0) (n), (1) (T),etc., are as

follows:

e0 =w1,1 (0),'+ (0)iv0S= W ¢ +i =

0

n W (n)iv
S= W1 0 = L (n- )  ), (n 1) (4.9)

where L(n-1 ) (0) is a linear combination of 0(0) (n), ¢(1) (TI), . (n-1) (n) and

their derivatives. In particular

W V"o 2 +W" 0 2(i( v+(0)'II
L o0 (0) = (W 1 o 2--- ) 'n2 o +  '1 0 o +  2 i (, ¢( )iv + 0 ( )

(4.10)

It is interesting to notice that the zeroth order solutions 0 (6) are exactly
2.

the same as those of the two-dimensional case, i.e.,

1
(0) (0) T d 1 2- 1)
1 r ; 03 =fdn f dn" rH 1 

1  (z)
+0 +W

3

1 
(4.11)

(0 ) (0)(0) (2)
2 2 1;04 _f dn fdj'TH (z)

3
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where z =2 i (W )+1/3 n ]3/2, H1/3(1) and H/(2) are, respectively, the first

and the second kind of Hankel function of the order 1/3.

The solutions of the higher order terms 0 (n)(r), n> 1 of equation (4.9)

are different from those of the two-dimensional case because the functions

L(n-1 ) (0) are different from the corresponding functions in the two-dimensional

case. The higher order terms are given by

4(n) = f d0) d 03 (0) (0) -0 )

fdT 0 L(n l) (0) (4.12)

The convergent series (4. 7) is convergent provided C is restricted so that

the series (4. 6) are convergent.

From the study of the stability of two-dimensional flow, we know that it

is usually more convenient to use asymptotic series for numerical purposes,

particularly in dealing with boundary value problems. It was found that the most
convenient way is to replace the first two solutions 01(0) and o2(0)(0) by the cor-

(0) 102responding asymptotic solutions f and f2 We may approximate the four
fundamental solutions {fl' f2' f3, f4 } by the functions {fl( 0), f2 0), 30 )

o4(0) ) in the boundary value problems. The asymptotic solutions of f and f24 -11 2

may be obtained by developing f ( ) in powers of (a I R1) " We put
1 1 1

f( ) = f(0)( ), + (iR1) ( )+* . ... (4.13)
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Substituting equation (4. 13) into equation (4. 2) and collecting terms of the
-1

same powers of ("IR ) , we have

(W - C) 1 -) f(O)' - 2 f(O) - (1(-)W"f (0 ) = 0 (4.14)

2f~) _(1-)W~(n)-

(W -C) [(1- ) f( (n)" 2 f(1) (1 W ="f (

-i 1  )2 f(n-1)iv -2012 (I ) f(n-1)" + a 1fn 1 ) -2 (1 -)

f(n-1)'"] n 1 (4.15)

The equations of the asymptotic solutions (4. 14) and (4. 15) are similar to those

of the two-dimensional case, but are not exactly the same even for the zeroth

order term f(0) because f(0) corresponds to the first two terms of the convergent

series (4. 7), i.e., f(O) = (0) + 0 (1). Since 0(1) is different from the cor -

responding function in the two-dimensional case, f (0) is different from the cor-

responding function of the two-dimensional case too.

There are two solutions of the type of (4.13), which are known as inviscid

(0). 2
solutions, and which can be obtained by developing f in powers of a 1 2. The

two particular integrals are

f(0) = (W -c) [h ( )1 2 h2 () + 1 4h 4 (1 ) +. .

(4.16)

f 2( 0 ) = (W - C) Ik 1 i 2k 3 W +al k 5 " '

(4.17)
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where h ( )1

2n + 2 a (W )- d d

(4. 18)

n> 0

k (M)= f
1a (W - c)2

k 2 3  M t 1 2 n (11-) d 1 d
a (W- C) Ca GI0

(4.19)
n 0

where t may be any fixed point but a # 1.

Near the axis of symmetry 1, we may approximate the velocity profile

in the following form:

2n
W (r) = W - Br (4.20)

where W1 , B and n are constants to be determined from the actual velocity pro-

file. Hence,

W()c = Br 2n 11-_(1- )n 1

(4.21)

W"= Br 2 n n[n-1) (1 - 2
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Equation (4. 14) for the velocity profile (4. 20) becomes

1 2 + n (n-1) (I _ 1 0

d t2 (4.22)

where = f for the velocity profile (4. 20). Equation (4. 22) is the Pretsch's

equation which has two solutions

f (0) = e P
1 1 0 1

f2 () = 2 = P2 ) + A n +K4 1  (4.23)

for a ! 1

where P1 () P2 (t) and A for n I to 5 are given in Reference 1. P ( and

P ( ) are power series of t. The constants e and K are determined by join-

ing the solutions f(0) and i(0) at the fixed point t = , i.e.,
1 1a

(a) e oa P ( a) = fl () a) = W( a)-c

2(ta -L e ) + - 01 (ta) tn a+ K 0b (tn) =1 a o a e 1 a a
0 0

f 2(0) (t) = 0 (4.24)

We shall use the functions f.(0) of equations (4. 16) and (4. 17) for a -  - -

and the functions 0 i of equation (4. 23) for 1 a a for the inviscid solutions

f and f respectively
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Having found the two particular integrals of f(0), we can obtain the higher

approximations by quadratures. However, in the calculation of stability of an

axisymmetrical flow, it is sufficient to use

{ f1( 0 ) , f2 ( 0 ) ,  3 (0 ) ' 4(0) .

We may obtain the viscous solutions of the asymptotic series in the same manner

as in the two-dimensional case. Since we are not going to use these asymptotic

viscous solutions, we shall not give them here.
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SECTION 5 - THE BOUNDARY'VALUE PROBLEM

Having obtained the fundamental solutions, we may solve the eigenvalue

problems for any parallel or nearly parallel axisymmetrical flow. Because of

some simplifications, we may divide the boundary value problems into two dif-

ferent classes as follows:

(i) Flow within a finite domain. In this case both the end points 1

and 2 are finite. One of the two limits may be the axis of

symmetry, i.e., r = 0, or t = 1. The boundary conditions are

those given in equation (2.20) which may be expressed in terms

of t as

f ( 1 )=f' ( 1 )=f ( 2 ) =f' (2)= 0 (5.1)

The factor T -t associated with f' = df will be dropped out ind 4
t.,e determinantal equation. Hence, we may use the boundary

conditions in the form of equation (5. 1). It should be noticed

that on the axis of symmetry, the boundary conditions are still

f (1) = f' (1) = 0

because the limiting conditions that the radial velocity component

on the axis of symmetry vanishes, give these two conditions.

This is one of the essential differences of the axisymmetrical

problems from those of symmetrical flow problem of the two-

dimensional case.

For the latter case, only one of the conditions f (0) or f1 (0)

will vanish depending whether the disturbance is symmetrical or

antisymmetrical.

19



The determinantal equation corresponding to the boundary conditions

(5. 1) is

fl f2 f3 f4
f11 f21 f31 f41

f12 f22 f32 f42
FI (c, U1, a 1 R) = f, f, f; f, 0 (5.2)

11 21 31 41
f, f, i f

f12 22 f32 f42

where

= fl ( 1 ) f = fI ( 1) ,etc.
11 f t 11 1 1

2
Similar to the two-dimensional case, if we neglect the terms of the order of

(ot I R1)-1 and

exponent f 2 Via R (W-c) de

equation (5.2) becomes

G 1 (a' c) f3 1  G2 (a 1 , c) f42
-- + -- (5.3)

G (0i c) f? G (al, c) f(
3 131 4 142

where

fl f2 fl f2
11 f12 11 f21

G1 = G = f
21 f22 12 f22

11 f12 f'11 f21G 3 = f 'G 4 =f'

21 f22 4 f12 22 (5.4)

20



Equation (5. 4) is exactly the same as that of the corresponding

problem for two-dimensional flow between solid walls in relative

motions. *

(ii) Flow with an infinite domain. It is the case for wake, jet, or

boundary layer flow on the outside of a circular cylinder or a

body of revolution. In this case, one of the end points 1 or

will be minus infinity, i.e., r 2 = -2c, Hence, oneof the

viscous solutions 03(0) (- ) is infinitely large. Our boundary
(0)

conditions require that f should be a linear combination of f

f2(0) and ¢4 ( 0) alone, i.e.,

f = c f1(0) + c2 f 2(0) + c4 0 4(0) (5.5)

The boundary conditions at the finite limit point 1 are

still

f N - f'v (t1) = 0 (5. 6a)

At 2 = -co the fundamental solution 0 (0) tends to betens t bezero very
t±arrapidly. The two inviscid solutions behave like e The

condition that f tends to be zero as r tends to be infinite excludes
+ r -r

the integral e Hence f must be proportional to e for

r > rb. This condition may be expressed in terms of as follows:

1/1-C " f?-aIf 0, C 2 (5.6b)

2 2
where 2 = 1-rb /r We may take rb as the boundary layer

thickness or the width of a wake or a jet.

*Equation (5.3) corresponds to equation (6. 13) of Reference 2., but there seems

a printing error of equation (6.13) of Reference 2, i.e., f4 should be f3 " Our

G's are f's in Reference 2.
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The deterninantal equation corresponding to the conditions (5. 6)

is

f1f 21 f41

F (c aR )= f'1 f2i f4 =0
211 f1 V11 41f2 1 2

-4 - 12  1 12 af 2

(5.7)

or

f 4 1 ( )6/2 G 2 a 1 G 1
41 = 2 62 11 (5.8)

f41 (I - Y G 4- a G3

where 8 0 for two-dimensional case and 6 =1 for axisymmetrical

case.
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SECTION 6 - EQUIVALENT PRINCIPLE,

Since both the fundamental solutions and the determinantal equations for

the axisymmetrical flow in the variable C are similar to those of the two-dimen-

I sional flow in the variable y, we may find some qualitative relations between

these two cases.

For the two-dimensional flow, the second derivative of the mean velocity

2 2
profile d W/dy plays an important role in the stability problem. We expect

2 2
that the second derivative d W/d C of the axisymmetrical flow plays a similar

2 2
role as d W/dy in the corresponding stability problem. For instance, the case

of d Wdy2 = 0 should correspond to the case of d W/d C = 0. In the two-di-
2 2

mensional case, d W/dy = 0 represents the plane Couette flow case which is

stable for infinitesimal disturbances at all Reynolds numbers. In the axi-

symmetrical case, d 2W/d 2 = 0 is the Poiseuille flow in a circular pipe which

is also stable for infinitesimal disturbances at all Reynolds numbers.

For the two-dimensional flow problem, if the basic flow has a point of

inflection in the flow field, i.e., W" (yc) = 0 for yI < Yc < y 2 ' the flow is very

unstable.

The minimum critical Reynolds number of the basic flow with a point of

inflection is much smaller than those without a point of inflection. For instance,

the two-dimensional wake or jet flows are much more unstable than the boundary

layer flow. The corresponding case in axisymmetrical flow should be W" (tc) = 0
2 2c

for 1 > C Eventhoughd W/dr = 0forr=r cwhere r < rc < r2 for

an axisymmetrical wake or jet d 2W/d 2 for C1 > C > C2" For instance, for the
far downstream wake behind a body of revolution, the basic velocity profile is

W(r) = 1 -bexp(-r 2 ) (6.1a)

or

W(C)= 1-bexp -r c2(1 ] (6.1b)
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where b is a constant in the stability analysis (see Part II). The flow field lies

betweenr 0 andr = or1 1 and C2

d 2W 2 22 = 2b (1 -2r exp(-r 2 ) (6.2)
dr2

Hence, d -W = 0 when r I = 0 < r < r2 = O (6.3)

dr 2  c -2-

However, d2W = -brc4 exp Erc2 (1- -)]# 0  (6.4)
d 

2

when 1 > C > - C

We thus expect that the axisymmetrical wake or jet will be more stable

than the corresponding two-dimensional wake or jet because there is no "effective"

point of inflection in the mean velocity profile for an axisymmetrical wake or

jet, i.e., d 2W/d2 0forC > >

The axis of symmetry in the axisymmetrical flow behaves quite different

from the axis of symmetry in the two-dimensional flow with symmetrical profile

because the boundary conditions for these two cases are different. In the axi-

symmetrical case, the boundary conditions on the axis of symmetry are the same

as those on a solid wall, i. e., both f and f' are zero. For the two-dimensional

case, only one of the functions f and V vanishes on the axis of symmetry depending

on whether the disturbance is symmetrical or antisymmetrical. Hence, the axis

of symmetry behaves like a solid wall in the axisymmetrical case but it is not so

in the two-dimensional case. As a result, in the stability analysis of an axi-

symmetrical flow, the viscous solution always takes care of the effect of vis-

cosity no matter whether there is a solid wall or not. We may draw the following
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equivalent principles between the two-dimensional and the axisymmetrical cases

of stability analysis:

(a) For flow of finite domain, the stability problem of an axisymmet-

rical flow corresponds to the stability problem of a two-dimen-

sional flow of unsymmetrical profile when the variable is used for

the variable y, the two-dimensional variable. The stability equa-

tion for both cases is equation (5.3). If W ( )=W (y) we would

expect that the critical Reynolds number for these two cases are

approximately the same.

Because of the above principle, it is expected that the stability

problem of the Poiseuille flow in a circular pipe will be the same

as that of plane Couette flow because W ( t ) = A + B and

W (y) = A + By. Actually we know that both cases are stable to

infinitesimal disturbance for all Reynolds numbers.

It should be pointed out that Pretsch 1 did not use the correct

determinantal equation (5.3) to investigate the stability of a

Poiseuille flow. He arbitrarily discarded the solution f3 which is

large but still finite on the axis of symmetry t 1. He used then

the functions f, f2 and f4 in the stability calculation. He had to

discard one of boundary conditions on the axis of symmetry. He

used f' = 0 as the boundary conditions as the axis of symmetry.

Finally his determinantal equation in our notations is

f11 f21 f41

F 1 1f f' f' f G4-f4, G2 =0
3 11 21 41 -4 4 4

ft f? fi
12 22 42

or f4 1  G 2

f41 G4 (6.5)

Pretsch found that the Poiseuille flow is stable according to equation (6.5).
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(b) For flow of infinite domain, the stability problem of an axisym-

metrical flow always corresponds to the stability problem of a

two-dimensional boundary layer flow when the variable t is used

for the variable y. The stability equation for both cases is equa-

tion (5. 8). If W ( ) = W (y), we would expect that the critical

Reynolds numbers for these cases are of the same order of mag-

nitude.

This result is especially interesting in the consideration of the

stability of an axisymmetrical wake or jet. We expect that the

minimum critical Reynolds number of an axisymmetrical wake or

jet would be of the same order of magnitude to that of a two -di-

mensional boundary layer flow which is much larger than that for

a two-dimensional wake or jet. The minimum critical Reynolds

number of Blasius boundary layer flow based on the displacement

thickness is of the order of 500. For boundary layer flows with
4

pressure gradient, the minimum critical Reynolds number varies

from 100 to 1000. On the other hand, the minimum critical

Reynolds number of a two-dimensional wake or jet 5 based on the

width of the wake or jet is of the order of 10. Hence, we expect

that the minimum critical Reynolds number of an axisymmetrical

wake or jet should be at least an order of magnitude higher than

that of a two-dimensional wake or jet.

Numerical calculations will be made to check the above principles. It

should be pointed out that no calculation of the stability of a two-dimensional

boundary layer flow of velocity profile similar to equation (6. 1) has been carried

out. The velocity profile (6. 1) may be considered as a uniform velocity (1-b)

superimposed on a variable velocity Wb, i.e.,

W = I -b + Wb

or

Wb= b [1 1-exp(-r 2 )] =b W (6.6a)
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Now if we replace c by c such that

bF = c - (1 -b) (6.7)

The stability equation (4.2) holds true for XV and c except that the Reynolds

number R should be replaced by Rlb which is

Rb =Rb (6.8)
lb 1

In other words, if we use the actual velocity defect bU which is the difference

between the velocity at the edge of the wake and the velocity on the axis of sym-

metry as our characteristic velocity, we may use the velocity profile W to in-

vestigate the stability of the wake. We shall use this transformation in our in-

vestigation of a wake flow in Part II. W is closer to the ordinary boundary layer

profile than W.
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